In Stable Baseline3, when using environments like ‘SubprocVecEnv’ for parallel environment management, the mean reward isn’t displayed by default during the training phase. This is because ‘SubprocVecEnv’ runs […]
The distinction between “terminated” and “truncated” in RL
In the updated Gymnasium environment interface, the distinction between “terminated” and “truncated” provides more clarity on why an episode ended, which is useful for more nuanced reinforcement learning […]
PyTorch实现Policy Gradient
先来回忆一下几个变量的定义,Policy Gradient的关键是通过Gradient来更新Policy $$\theta_{k+1} = \theta_{k} + a \nabla _{\theta}J(\pi_{\theta})|_{\theta_k}$$ 其中$\pi_{\theta}$是参数话的policy,$\theta$是它的系数,$J(\pi_{\theta})$用来衡量当前policy $\pi_{\theta}$的性能,咱们这里用$\pi_{\theta}$的期望收益$E_{\tau \sim \pi_{\theta}}[R(\tau)]$作为policy的性能,$R(\tau)$表示一局游戏的收益,$\tau \sim \pi_{\theta}$表示是在当前policy $\pi_{\theta}$下。 $\nabla _{\theta}J(\pi_{\theta})$等于下面这一串 $$\nabla _{\theta}J(\pi_{\theta}) = E_{\tau \sim \pi_{\theta}} \left [ \sum_{t=0}^{T} \nabla_{\theta} […]
Policy Gradient
Q Learning 先学到一个value function,之后基于value function可以得到最优的policy。那Policy Gradient名字已经很直白了,直接对Policy进行建模,就很直接。 我们来看下原始论文是怎么推导的。